Site icon Gamers Word

Intel’s plans for gamers in focus: Tiger Lake and Xe graphics are coming soonon 13 August 2020 at 2:04 pm Eurogamer.net

Intel's Plans For Gamers In Focus: Tiger Lake And Xe Graphics Are Coming Soon

In its 2020 Architecture Day, Intel today lays out plans for a vast array of products from the laptop to the server farm, with an ambitious graphics line-up that sees the firm delivering a new Xe architecture that scales from the teraflop to the petaflop. There’s a vast array of technology unveiled today but primarily, gamers will be interested in the firm’s new impressive Tiger Lake processor and its upcoming DG1 discrete graphics card, both backed by an innovative software component. Not only that, but the firm also drops a few hints about what to expect from its first enthusiast-level gaming GPU, due in 2021.

Much of Intel’s emphasis in its presentation is on Tiger Lake – a mobile-orientated SoC (system on chip) that is designed to work a 10W to 65W power window, that sees the firm deliver a brand new CPU architecture paired with a radical improvement in integrated graphics power. On the processor side, Tiger Lake sticks with Intel’s preferred four-core/eight-thread CPU configuration, with the new Willow Cove architecture working in tandem with improvements in power efficiency and frequency range to deliver what Intel says is a ‘better than generational leap’ in processing performance. Actual numbers were somewhat thin on the ground, but the existing 10th Gen Ice Lake architecture with its Sunny Cove cores topped out at around 4.0GHz, while Intel’s charts suggest that 4.6GHz and perhaps higher is achievable with Willow Cove.

This is backed by a new graphics core that Intel claims delivers a 2x improvement in performance in the same power envelope using a similar amount of silicon area. This sounds like quite a remarkable achievement, but Tiger Lake does seem capable of delivering this based on Intel’s demonstrations. For starters, the 64 EUs (execution units) of Ice Lake are boosted to 96 on Tiger Lake. The EU itself has been comprehensively redesigned to be smaller and more efficient, while clock speeds scale higher.

Read more

In its 2020 Architecture Day, Intel today lays out plans for a vast array of products from the laptop to the server farm, with an ambitious graphics line-up that sees the firm delivering a new Xe architecture that scales from the teraflop to the petaflop. There’s a vast array of technology unveiled today but primarily, gamers will be interested in the firm’s new impressive Tiger Lake processor and its upcoming DG1 discrete graphics card, both backed by an innovative software component. Not only that, but the firm also drops a few hints about what to expect from its first enthusiast-level gaming GPU, due in 2021.Much of Intel’s emphasis in its presentation is on Tiger Lake – a mobile-orientated SoC (system on chip) that is designed to work a 10W to 65W power window, that sees the firm deliver a brand new CPU architecture paired with a radical improvement in integrated graphics power. On the processor side, Tiger Lake sticks with Intel’s preferred four-core/eight-thread CPU configuration, with the new Willow Cove architecture working in tandem with improvements in power efficiency and frequency range to deliver what Intel says is a ‘better than generational leap’ in processing performance. Actual numbers were somewhat thin on the ground, but the existing 10th Gen Ice Lake architecture with its Sunny Cove cores topped out at around 4.0GHz, while Intel’s charts suggest that 4.6GHz and perhaps higher is achievable with Willow Cove.This is backed by a new graphics core that Intel claims delivers a 2x improvement in performance in the same power envelope using a similar amount of silicon area. This sounds like quite a remarkable achievement, but Tiger Lake does seem capable of delivering this based on Intel’s demonstrations. For starters, the 64 EUs (execution units) of Ice Lake are boosted to 96 on Tiger Lake. The EU itself has been comprehensively redesigned to be smaller and more efficient, while clock speeds scale higher. Read moreEurogamer.net

Spread the love
Exit mobile version